What Is An Artificial Neural Network, And What Applications Does It Have?
Artificial Neural Networks
- They have become essential because they allow us to solve complex problems using regular rule-based programming.
- Its applications have revolutionized the world of robotics and data algorithms.
- Although they are a trend, we must bear in mind that in most cases, the improvements they produce compared to more straightforward methodologies do not justify their use.
What Are Artificial Neural Networks?
An artificial neural network, or its acronym in English (ANN, Artificial Neural Network), is a series of algorithms that look for relationships in a data set. It consists of interconnected nodes that give it the appearance of a biological neural network. It takes its name (despite the lack of consensus on how it reflects the functioning of the human brain).
The Architecture Of An Artificial Neural Network
The architecture of these systems is made up of different layers of nodes. The most common structure usually has three layers of nodes interconnected.
The first layer or input layer has input nodes that send data to a second layer. These nodes are passive and pass the information to the next layer. The number of nodes in this layer matches the amount of data being input.
The nodes of the second layer or hidden layer (hidden layer) filter the relevant patterns from those that are not, identifying the critical information. These nodes are active, which means combining the data from the previous layer. Each input received is multiplied by a weight, and the results are added together and delimited with a function (sigmoid or logistic) to improve efficiency. These nodes usually represent 10% concerning those of the first layer.
In the third layer, also called the output layer, the second process is repeated, and the data is again combined and modified in the active nodes to produce the output values.
Advantages Of Artificial Neural Network
Its ability to complete tasks with infinite combinations makes it ideal considering the rising trend of applications based on Big Data.
However, its unique ability to make sense of incomplete, ambiguous, or contradictory data makes it truly valuable. That is, the ability to use controlled processes when there is no exact model to follow.
Types Of Neural Networks
Usually, the operation of networks is in a three-layer architecture and a single information flow. However, a neural network can have infinite layers, nodes and structures with more complex information flow giving rise to different typologies of artificial neural networks.
What Is A Neural Network Used For?
These algorithmic systems that help us solve problems have multiple applications that we can include in:
- Event prediction and simulations: Production of expected output values based on incoming data.
- Recognition and classification: Association of patterns and organization of data sets in predefined classes. Even identifying unique features without prior data.
- Data processing and modelling: Data validation, aggregation and analysis. Design and troubleshooting in complex software systems.
- Control engineering: Monitoring of computer systems and manipulation of robots. Including the creation of autonomous systems and robots.
- Artificial Intelligence: Forming part of the deep learning and machine learning technologies that are fundamental parts of artificial intelligence
When It Makes Sense To Use A Neural Network And When It Doesn’t
It is necessary to know the advanced methodologies, but at the same time, we have to be efficient in our data projects. Under the premise of the principle of parsimony, a simple method to a specific problem gives us a fallible model but is practical in most cases.
This article has discussed the benefits of artificial neural networks that can undoubtedly add value to data modelling. However, the reality is that in 80% of data problems, neural networks do not produce a better result than traditional models.
So let’s not get carried away by fashion in the sector, and let’s be critical when analyzing a project and assessing the appropriate methodology with which to approach it. In this sense, the ANNs have their advantage over traditional models in large volumes of data with many cases.
Also Read: Machine Learning: Curse Or Blessing For IT Security?